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Abstract
Sepsis is a highly prevalent condition in intensive care units, with one of its severe complica-
tions being acute kidney injury (AKI). Sepsis-associated acute kidney injury (SA-AKI) can be 
a reversible process if timely recognition and adequate treatment are provided. This system-
atic review (SR) summarizes the current clinical evidence on machine learning (ML)-based 
prediction models. After conducting the literature search, nine publications met the inclusion 
criteria of the SR, categorized into three groups: prediction of SA-AKI occurrence, prediction 
of persistent AKI in septic patients, and prediction of mortality in SA-AKI patients. In summary, 
based on the current clinical evidence, ML-based methods show great potential for future clin-
ical applications. They have the ability to outperform conventional scoring systems, such as 
the Sequential Organ Failure Assessment (SOFA) and the Simplified Acute Physiology Score 
II (SAPS II), indicating their promising role in clinical practice.
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Introduction

Acute kidney injury (AKI) is a frequent 
complication in patients admitted to 

the intensive care unit (ICU) due to sep-
sis.[1] In these patients, the occurrence and 
severity of AKI are predictors of poor 
clinical outcomes.[2] AKI complicates 25-
75% of cases in patients associated with 
sepsis or septic shock, termed sepsis-as-
sociated acute kidney injury (SA-AKI).
[3-7] Several mechanisms may play a role 
in this complication, including microvas-

cular dysfunction, inflammation, and 
metabolic reprogramming.[8] Timely di-
agnosis, along with prompt and adequate 
treatment, can effectively render AKI re-
versible.[9] Various approaches have been 
tested to anticipate the occurrence and 
severity of AKI in this subset of patients. 
ICU scoring systems, such as the Simpli-
fied Acute Physiology Score II (SAPS II), 
the Sequential Organ Failure Assessment 
(SOFA), and the Acute Physiology and 
Chronic Health Evaluation II (APACHE 
II), have been found inadequate in relia-
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bility predicting SA-AKI.[10-12] An alternative strategy in-
volves identifying important molecules that can aid in 
predicting AKI.[13-16]

The advent of big-data analysis and machine learning 
(ML) methods has increasingly influenced the field of 
healthcare.[17] In recent years, various ML-based methods 
have been utilized to predict the development of acute 
kidney injury.[18]

The potential applications of ML-based prediction of SA-
AKI in patients admitted to the ICU with sepsis repre-
sent a debated and evolving topic.

The aim of this systematic review (SR) is to report on clini-
cal evidence related to the ML-based prediction of SA-AKI.

Materials and Methods

This SR was conducted in accordance with the recom-
mendations of the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) and 
was registered in the PROSPERO registry for SRs (No. 
CRD42023422436, May 9, 2023).

Search Strategy, Data Extraction, and Screening
The systematic search was conducted on the PubMed, 
Embase, Scopus, and Medline databases, reviewing lit-
erature available until July 17, 2023. The clinical litera-
ture was searched using the keywords “machine learn-
ing acute kidney injury.” This keyword was further 
expanded by screening the references of the included 
studies to identify possible synonyms. Additionally, we 
examined the reference sections of potential publications 
for relevance. The search was limited to articles that meet 
the inclusion criteria defined by the SR. 

The screening process for selecting studies began with 
an evaluation of the titles, then narrowed down based 
on the abstracts, and finally, full texts were reviewed for 
further refinement by two reviewers to identify relevant 
studies. Full-text articles for potentially eligible studies 
were obtained and assessed for eligibility. Any discrep-
ancies between reviewers were resolved through discus-
sion and consensus.

Data extraction was conducted using a predefined form 
that included information on study design, sample size, 
patient characteristics, intervention/exposure details, 
comparator details, outcome measures, effect measures, 
follow-up time, funding source, and conflicts of interest.

Eligibility Criteria
This study includes randomized controlled trials (RCTs), 
observational studies, cohort studies, and case-control 
studies that employed some form of ML for the predic-
tion of AKI in adult (over 18 years of age) ICU patients 
with sepsis. The study is limited to English language 
publications with full text available.

The exclusion criteria for this review include case re-
ports, comments, letters to the editor, editorials, errata, 
and replies. Study protocols were also excluded. Further-
more, studies that do not utilize ML algorithms for the 
prediction of AKI in ICU patients were excluded. Stud-
ies evaluating the prediction of SA-AKI in non-ICU set-
tings, studies that do not report on patient outcomes, and 
studies not published in the English language were also 
excluded. Additionally, studies conducted on pediatric 
patients were excluded.

Outcomes
The primary outcome of this SR is to compare and evalu-
ate the ML-based prediction of AKI in patients admitted 
to the ICU with sepsis, focusing on the accuracy, sensi-
tivity, and specificity of the ML algorithms. This includes 
predicting the occurrence and mortality of SA-AKI, as 
well as the occurrence of persistent renal insufficiency 
after SA-AKI. Outcomes were defined and measured 
based on the included studies’ methodologies, encom-
passing the models and algorithms used for prediction, 
the reference standards for AKI diagnosis, and the tim-
ing of outcome measurement (e.g., duration of ICU stay, 
30-day mortality).

Risk of Bias
The risk of bias was assessed using five parameters: 
reasonable cohort size, proper cross-validation, the in-
clusion of an external validation set, blinding of partic-
ipants and personnel, and the completeness of outcome 
data (Table 1).

Results

Study Selection and Characteristics
The literature search resulted in 3,680 publications, and 
after screening for duplicates, irrelevance, or improper 
records, nine studies were deemed suitable for the cur-
rent SR (Figure 1). 

The total number of patients enrolled in the studies 
ranged from 718[19] to 45,895.[20] Thirteen different ML-
based methodological approaches were evaluated in the 
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studies. Some studies tested a single approach, while oth-
ers employed different approaches concurrently: logistic 
regression (LR) was used in seven studies,[19,21,22-26] random 
forest, extreme gradient boost (XGB), and support vector 
machine (SVM) in seven studies,[20-26] K-nearest neighbor 
and decision tree (DT) in four studies,[19,22,23,24] recurrent 
neural network - long short-term memory (RNN-LSTM), 
Adaptive Boosting (AdaBoost), Categorical Boosting 
(CatBoost), multilayer perceptron, naive Bayesian, gradi-
ent boosting machine (GBM), and Light Gradient Boost-
ing Machine (LightGBM) in four studies,[19,24-26] and artifi-
cial neural network in three studies.[20-22]

The relevant content related to ML-based prediction of 
AKI in septic patients is summarized into three sections: 
occurrence of SA-AKI, persistent renal insufficiency, and 
mortality in patients that developed SA-AKI. The stud-
ies meeting the inclusion criteria were arranged in order 
based on their exact publication dates, so the reference 
number follows this order when presented.

Prediction of SA-AKI Occurrence
The prediction of SA-AKI in septic patients treated in the 
ICU was investigated in two retrospective observational 
studies.

One study analyzed a total of 3,176 septic patients and 
tested seven different ML-based methods, comparing 
them with two traditional clinical scores (SOFA, SAPS 
II).[22] The performance of ML-based methods and clinical 
scores was evaluated by the area under the curve (AUC) 
of the receiver operating curve (ROC).[22] The XGBoost 
model achieved the best predictive value for the occur-
rence of SA-AKI before the onset of AKI with an AUC of 
0.817.[22] Traditional SOFA and SAPS II scores reported 
AUC values of 0.646 and 0.702, respectively.[22] The sen-
sitive parameters of the XGBoost model for prediction 
included renal parameters (e.g., urine output, estimated 
glomerular filtration rate (eGFR), minimum creatinine, 
and minimum blood urea nitrogen (BUN)), mechani-
cal ventilation, maximum partial thromboplastin time 
(PTT), and body mass index (BMI).[22]

The other study analyzed a total of 45,895 septic patients 
and tested four different ML-based methods as part of 
an ensemble model, with the highest weight given to 
XGBoost.[20]

Figure 1. Flow diagram.

Table 1. Risk of Bias evaluation panel

Study (First author, year) Reasonable Proper Cross- External Validation Blinding of Participants Incomplete Outcome 
  Cohort Size Validation Set and Personnel Data

Luo X. G. et al., 2021[21]  L L S L L

He J. et al., 2021 [19] L M L L L

Yue S. et al., 2022 [22] L L S L L

Luo X. G. et al., 2022 [27] L M L L L

Zhang L. et al., 2022 [20] L L L L L

Li X. et al., 2023 [23] L M S L L

Zhou H. et al., 2023 [24] L M L L L

Yang J. et al., 2023 [25] L L S L L

Fan Z. et al., 2023 [26] L L L L L

L: low risk of bias; M: moderate risk of bias; S: serious risk of bias; C: critical risk of bias; U: unclear risk of bias.
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The performance of ML-based methods and clinical 
scores was evaluated by the area under the curve (AUC).
[20] These models were applied to predict the occurrence 
of SA-AKI 48 to 12 hours before the onset of AKI.[20] The 
XGBoost-weighted ensemble model achieved a predic-
tive value for the occurrence of SA-AKI with AUC rang-
ing from 0.774 to 0.788 and 0.756 to 0.813 (Table 2).[20] 

Prediction of Persistent Renal Insufficiency in SA-
AKI Patients 
Prediction of persistent renal insufficiency was investi-
gated in two retrospective observational studies involv-
ing ICU patients with sepsis.[19, 21]

One study analyzed a total of 5,984 septic patients and 
tested five different ML-based methods.[21] In this study, 
the artificial neural network (ANN) and logistic regres-
sion (LR) models achieved the best performance in pre-
dicting persistent renal insufficiency in SA-AKI patients, 
with an AUC of 0.76.[21] Serum creatinine and urine out-
put at the stage of AKI were strong predictors of persis-
tent AKI is septic patients.[21]

The other study analyzed a total of 718 septic patients 
and tested three different ML-based methods.[19] The 
RNN-LSTM method provided the best performance, 
with an AUC of 1, and the decision tree (DT) method 
achieved the second-best performance in predicting per-
sistent AKI in septic patients, with an AUC of 0.954.[19] 
The change in the non-renal SOFA score between the first 

and third day is an important parameter in predicting 
the persistence of renal insufficiency (Table 3).[19] 

Prediction of Mortality in SA-AKI Patients
The prediction of mortality in SA-AKI patients was in-
vestigated in five different studies involving ICUs, with 
a total of 51,913 septic patients.[23-27] The number of ML-
based methods adopted ranged from 3 to 11.[24,27]

One study analyzed 15,873 septic patients and tested 
three different ML-based methods.[27] The XGBoost 
model achieved the highest AUC values, ranging from 
0.804 to 0.848 and from 0.748 to 0.818, outperforming 
traditional clinical scores (SOFA, SAPS II) as well.[27] The 
top five predictor parameters were Glasgow Coma Scale 
(GCS) score, urine output, ICU length of stay, older age, 
and higher blood urea nitrogen (BUN).[27] The second 
study analyzed 8,129 septic patients and tested six dif-
ferent ML-based methods.[23] The XGBoost model had 
the best performance with an AUC of 0.794, while the 
score systems (SOFA: AUC=0.701, SAPS II: AUC=0.706) 
yielded weaker results in this study.[23] The third study 
analyzed 16,154 septic patients and tested 11 different 
ML-based methods.[24] The CatBoost model had the best 
performance with an AUC of 0.827, followed by Gradient 
Boosting Decision Tree (GBDT) (AUC=0.823) and Light 
Gradient Boosting Machine (LightGBM) (AUC=0.819).
[24] The fourth study analyzed 9,158 septic patients and 
tested four different ML-based methods.[25] The XGBoost 
model showed the best performance in predicting 30-day 

Table 2. Prediction of occurrence of SA-AKI

Study (First author, year, ref.) ML-method Number of patients Predictive power AUC

Yue S., 2022 [22] logistic regression (LR), 3 176 XGBoost: AUC=0.817. 
  k-nearest neighbors (KNN),  LR: AUC= 0.737 
  support vector machine (SVM),  KNN: AUC= 0.664 
  decision tree (DT), random  SVM: AUC= 0.735 
  forest (RF), Extreme Gradient  DT: AUC= 0.749 
  Boost (XGBoost), artificial  RF: AUC= 0.779 
  neural network (ANN)  ANN: AUC= 0.755

    SAPS II: AUC= 0.702

    SOFA: AUC= 0.646 

    XGBoost model had the highest sensitivity  
    (0.945), accuracy (0.832), recall (0.852),  
    F1 score (0.895) and the third highest 
    specificity (0.913).

Zhang L., 2022 [20] Ensemble model of support 45 895 Ensemble model: AUC 0.774-0.788 and 
  vector machine (SVM), random  0.756-0.813. 
  forest (RF), artificial neural  The sensitivity of the ensemble model 
  network (ANN), Extreme  were 0.650-0.724 and 0.685-0.840. 
  Gradient Boost (XGBoost)  The model correctly predicted up 72,4% 
  XGBoost had the highest weight.  and 84% of SA-AKI cases.
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mortality with an AUC of 0.873.[25] The fifth study ana-
lyzed 2,599 septic patients and tested five different ML-
based methods.[26] The XGBoost model demonstrated the 
best performance across the 7-day (AUC=0.91), 14-day 
(AUC=0.78), and 28-day groups (AUC=0.83) (Table 4).[26]

Discussion

This SR reports recent clinical evidence of the role of ML-
based prediction models in patients with SA-AKI in the 
ICU: occurrence of SA-AKI, persistent renal insufficiency, 

Table 4. Prediction of mortality of SA-AKI

Study (First author, year, ref.) Method Number of patients Result

Luo X. G. et al., 2022 [27] Extreme Gradient Boost 15 873 XGBoost: AUC=0.848-0.804 and 
  (XGBoost), Random forest (RF),  0.818-0.748, it outperformed traditional 
  support vector machine (SVM)  risk score as well. 

    This model achieved a sensitivity of  
    80,1% and specificity of 72,9% at the  
    cutoff of 0.0349.

Li X. et al., 2023 [23] logistic regression (LR), support 8 129 XGBoost: AUC=0.794. 
  vector machine (SVM), k-nearest  Conventional score systems had weaker 
  neighbors (KNN), decision tree  performance (SOFA: AUC=0.701, 
  (DT), random forest (RF),  SAPS II: AUC=0.706). 
  Extreme Gradient Boost (XGBoost)

Zhou H. et al., 2023 [24] Categorical Boosting (CatBoost), 16 154 CatBoost outperformed the other models 
  k-nearest neighbors (KNN),  (AUC=0.827, ACC=75%, best 
  AdaBoost, multilayer perceptron  cutoff=19,5%, Youden index=50%, 
  (MLP), support vector machine  sensitivity=75%, specificity=75%, 
  (SVM), logistic regression (LR),  F1-score=56%, PPV=44%, NPV=92%). 
  NaiveBayes, gradient boosting 
  decision tree (GBDT), random 
  forest (RF), light gradient boosting 
  (LightGBM), Extreme Gradient 
  Boost (XGBoost)   

Yang J. et al., 2023 [25] logistic regression (LR), 9 158 XGBoost model achieved the best 
  random forest (RF), Gradient  performance (AUC=0.873, 
  Boosting Machine (GBM) and  accuracy=0.773, precision=0.724, 
  Extreme Gradient Boost (XGBoost)  recall=0.896, F1-score=0.801).

Fan Z. et al., 2023 [26] random forest (RF), support vector 2 599 The XGBoost model showed the best 
  machine (SVM), logistic regression  performance in the 7- (AUC=0.91), 
  (LR), Extreme Gradient Boost  14- (AUC=0.78) and 28-day groups 
  (XGBoost) and multilayer  (AUC=0.83). 
  perceptron (MLP)

Table 3. Prediction of occurrence of persistent renal insufficiency in SA-AKI patients 

Study (First author, year, ref.) Method Number of patients Predictive power AUC

Luo X. G. et al., 2021[21] logistic regression (LR), random 5 984 ANN and LR: AUC=0.76. 
  forest (RF), support vector  ANN achieved the highest accuracy of 
  machine (SVM), artificial neural  0.71. 
  network (ANN) Extreme  XGBoost model showed the highest recall 
  Gradient Boost (XGBoost)  of 0.81.

    RF model had the highest precision and  
    F1 score of 0.89 and 0.80. 

He J. et al., 2021[19] Recurrent Neural Network-Long 718 RNN-LSTM: AUC=1, 
  Short-Term Memory (RNN-LSTM),  DT: AUC=0.954, 
  decision tree (DT), logistic  LR: AUC= 0.728, 
  regression (LR)  difference between 1st and 3rd day non  
    renal SOFA score is an important  
    predictive factor



Journal of Critical and Intensive Care - Volume 15, Issue 1, April 202442

Stubnya et al. SR: ML-Based Prediction of SA-AKI

and mortality in patients that developed SA-AKI. The re-
sults demonstrate that ML-based methods have signif-
icant potential in predicting the early onset of SA-AKI, 
persistent AKI, and mortality in SA-AKI patients. Based 
on the collected results, the XGBoost method emerged as 
the most effective in forecasting. Traditional ICU scoring 
systems such as SOFA and SAPS-II were outperformed 
by various ML-based techniques.

Numerous research findings and comprehensive meta-
analyses or systematic reviews confirm that various ma-
chine learning-based methods can be reliably utilized 
in ICU settings.[28] Reliable results have been found, for 
instance, regarding the use of machine learning-based 
prediction models for early sepsis detection, where 
XGBoost and random forest techniques were applied.[28] 
There are reliable results in predicting the clinical out-
comes of patients infected with Coronavirus Disease 
2019 (COVID-19) as well; however, further validation is 
needed before its implementation in everyday clinical 
practice.[29]

The latest research and the growing body of evidence 
indicate how prominently the duration of AKI and the 
temporal course of renal recovery are associated with the 
healing outcomes of critically ill septic patients in the in-
tensive care unit.[30,31] 

Since timing is crucial in the treatment of AKI, rapid 
diagnosis and prediction have been highly discussed 
topics in the medical field. Various biomarkers, such 
as microRNA-22-3p, neutrophil gelatinase-associated 
lipocalin, urinary miR-26b, or soluble thrombomod-
ulin, have been previously explored, alongside different 
imaging modality-based techniques.[13-16] However, none 
of these approaches have yet overcome the challenges of 
technical and clinical applicability. Traditional scoring 
systems used among intensive care unit patients, such as 
APACHE II, SOFA, or SAPS II, suffer from low specificity 
and sensitivity, making them inadequate for predicting 
AKI.[32] 

Therefore, with the continuous advancement of artificial 
intelligence and machine learning and their increasing 
adoption in the healthcare domain, there is high poten-
tial for the early diagnosis and prediction of AKI.

This SR summarizes all available evidence regarding the 
prediction of early diagnosis, persistence, and mortal-
ity of SA-AKI. The two most significant findings of this 
SR are that the Extreme Gradient Boost (XGBoost) ML-

based method consistently outperformed other machine 
learning techniques in reliably predicting the onset, pro-
gression, and mortality of AKI in critically ill septic pa-
tients. Another important result of this research is that 
ML-based methods, such as XGBoost or random forest, 
surpassed conventional intensive care risk scoring sys-
tems like SOFA or SAPS II. These findings suggest the 
potential for redesigning or incorporating ML-based 
methods either as replacements for or in conjunction 
with traditional risk scoring systems in the intensive care 
setting.

Limitations of this SR include the relatively limited num-
ber of studies, all conducted retrospectively. Another 
limitation is that the different studies were based on the 
same database. Before the widespread application of 
ML-based methods, prospective randomized controlled 
trials are necessary.

Conclusion

In conclusion, the available evidence suggests that ML-
based prediction models have the potential to serve as 
predictors of occurrence, persistence, or mortality of SA-
AKI in patients treated in intensive care units.
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